Chapter 1. Introducing MLflow]


Getting started with MLflow


$ chmod +x ./run.sh
$ ./run.sh


http://localhost:8888


Developing your first end-to-end pipeline in MLflow


$ cd ~/tmp
$ source stockpred_env/bin/activate
$ pip install mlflow==1.28.*


$ cd ~/tmp/Machine-Learning-Engineering-with-MLflow/Chapter01/stockpred/


$ docker build . -t stockpred
$ mlflow run .
$ mlflow ui


https://docs.conda.io/en/latest/miniconda.html


// Устанавливаю Miniconda3
$ chmod +x ./Miniconda3-latest-Linux-x86_64.sh
$ ./Miniconda3-latest-Linux-x86_64.sh
$ conda update -n base -c defaults conda


$ pip install sklearn


$ mlflow models serve -m ./mlruns/0/b181d1d1b6c04496be50891ce01a0d08/artifacts/model_random_forest/


$ curl http://127.0.0.1:5000/invocations -H 'Content-Type:application/json' -d '{"data":[[1,1,1,1,0,1,1,1,0,1,1,1,0,0]]}'


response:

[1]