Chapter 7. Data and Feature Management
Running your end-to-end pipeline
$ cd ~/tmp/Machine-Learning-Engineering-with-MLflow/Chapter07/psystock-data-features-main/
$ conda env create -f conda.yaml
$ conda activate pystock-data-features
$ mlflow run . --experiment-name=psystock_data_pipelines
$ mlflow ui
http://localhost:5000
// Пришлось сделать
$ pip uninstall mlflow
$ pip install mlflow
[???] Using a feature store
Issues:
https://github.com/PacktPublishing/Machine-Learning-Engineering-with-MLflow/issues/8
$ cd ~/tmp/Machine-Learning-Engineering-with-MLflow/Chapter07/psystock_feature_store
$ pip install feast==0.10 protobuf==3.20.*
$ protobuf package to 3.20.x
$ feast init
????
$ feast apply